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1.

“In order to describe an aspect of holistic reality we have to ignore
certain factors such that the remainder separatcs into facts. Inevitably,
such a description is true only within the adopted partition of the world,
that is, within the chosen context”.

Hans Primas
Chemistry, Quantum Mechanics and Reductionism [57]

Abstract

Different topological and physicochemical parameters have been used to preaict hydro-
phobicity (log P, octanol-water) of chemicals. We calculated a hydrogen bonding
parameter (HBl) and a large number of molecular connectivity and complexity indices for
adiverse set of 382 molecules. It is known from earlier studies that topological indices (TIs)
predict properties of congeneric sets reasonably well. Since HB, is an approximate
quantifier of hydrogen bonding and has integral values, we used HB, to classify the
diverse set into strongly and weakly hydrogen bonding subsets. In an attempt to examine
the utility of TIs in predicting properties of relatively similar groups of molecules, we
carried out a correlation of log P with TIs for a subset (n = 139) of the original diverse set
(n = 382) with a weak hydrogen bonding ability (HB, = 0). Results show that Tls give a
better predictive model for the more homogeneous subset as compared to the diverse set
of molecules.

Introduction

185

A current trend in chemistry [1-11], pharmacology [12—24], toxicology [25-32],
pharmaceutical drug design [33—36], and risk assessment of chemicals [37-40] is the
prediction of behavior properties of molecules from their structure. The basic assump-
tion underlying this field of research, called quantitative structure—activity relationships
(QSAR), is that the structure of a molecule determines its behavior. This paradigm [22]
can be expressed by the relationship:
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P = f(S), (D

where P is any physical, biomedicinal, toxicological or environmental activity/endpoint
of interest and S may represent either an empirical property of the total molecular
structure, a relevant substructural fragment or a theoretical structural descriptor (or a set
of descriptors) quantitating some aspects of molecular structure.

A review of QSAR studies of the past two decades shows that S in eq. (1) may
frequently represent an empirical physical property or physicochemical substituent
constants [41--43], quantum chemical structural parameter(s) calculated by ab initio/
semi-empirical methods [44], or substructural and topological parameters defined on
chemical graphs of molecules [1-10,13-24,27-35].

A large number of QSARs have been published using physicochemical and
quantum chemical parameters. Unfortunately, empirical parameters are not readily
available for a large fraction of known chemical structures [40,45,46]. In drug design,
one has to evaluate a large number (200,000 or more) of probable analogs derived from
a lead to develop a new therapeutic agent [41]. Quantum chemical methods are not
effective when considering a large number of molecules because computation time is
excessively long. A similar situation exists in hazard assessment of chemicals. More
than six million distinct chemical substances are known, and humans are exposed to
about 66,000 of them [47). This number is based on chemicals listed in the Toxic
Substances Control Act (TSCA) inventory as well as those regulated as pesticides,
drugs, food additives and cosmetics. Another sobering fact is that the number of new
organic compounds synthesized worldwide is increasing by more than 400,000 per year.

Table 1
Important QSAR endpoints (properties)
Physicochemical Biological
Molar volume Receptor binding (K,)
Boiling point Michaelis constant K.)
Melting point Inhibitor constant (Ki)
Vapor pressure Biodegradation
Water solubility Bioconcentration
Dissociation constant (pKa) Alkylation profile (with DNA)
Partition coefficient Metabolic profile
Octanol-water (log P) Chronic toxicity
Air—water Carcinogenicity
Sediment-water Mutagenicity
Reactivity (electrophile) Acute toxicity
LD,
LC
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Of these new chemicals, about 1000 are introduced yearly into societal use [48]. In drug
research, toxicology and risk assessment of chemicals, there is need for reliable predic-
tion of a large number of properties. Table 1 gives a sample of some of the more
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frequently used properties. Although many of these properties can be determined
empirically, because of cost and time limitations only a small fraction of the large
number of candidate chemicals can be rigorously tested. Therefore, there is a need
for the development of methods which could rapidly screen chemicals for their
biomedicinal/toxicological properties to focus resources on chemicals with the greatest
potential [48-50]. QSAR models which are based on parameters that are calculable for
all chemical structures are gradually emerging as the method of choice in such cases.

2. Structure-activity relationship (SAR)

Structure—activity relationships (SARs) are models which attempt to relate
certain structural aspects of molecules to their physicochemical/biological/toxicological
properties [22]. High quality and reproducible data on the property of interest for an
appropriate set of chemicals and "optimal characterization” of structure of the selected
chemicals are the two pre-requisites for the development of SAR. Although physico-
chemical properties of molecules and data on the biological effects of chemicals at
different levels of organization, viz., macromolecule (isolated receptor, protein, DNA
‘or enzyme), membrane (transport through membranes and ion channels, interaction
with membrane-bound enzymes), organelle, organ, whole organism and ecosystem are
gradually becoming available [51-56], the factor S of eq. (1) has remained elusive to
this day. A survey of SAR literature of the past two decades indicates that there is no
unifying approach in the representation and optimal characterization of molecular
structure [6,13,19,21,22,57]. By optimal characterization, we mean (a) delineation and
quantitation of those aspects of molecular structure which determine a particular
property, and (b) development of quantitative models which predict properties from
structural variables. Part of the problem arises because we need to predict different
properties of molecules which might not originate from analogous molecular or sub-
molecular phenomena. However, at a more fundamental level, the principal hurdle
has been the lack of uniformity in our definition and quantification of molecular
structure [57,58].

The term molecular structure represents a set of nonequivalent and probably
disjoint concepts [57]. There is no reason to believe that when we discuss diverse topics
(e.g. chemical synthesis, reaction rates, spectroscopic transitions, reaction mechanisms,
and ab initio calculations) using the notion of molecular structure, the different mean-
ings we attach to the single term "molecular structure” originate from the same funda-
mental concept [59]. On the contrary, there is a theoretical and philosophical basis for
the nonhomogeneity of concepts covered by the term molecular structure. In their
famous paper, Einstein, Podolsky and Rosen [60] discussed correlations in spatially
isolated quantal systems, and pointed out that such systems possess interference arising
out of nonlocal interactions. This indicates that nature is entangled, holistic, and non-
separable. Experimental evidences indicate that EPR (Einstein—Podolsky—Rosen)
correlations are genuine characteristics of nature [57]. On the other hand, the dominant
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preconception of science is that modelling and analysis of nature in terms of approxi-
mately independent parts is in accordance with nature. This is popularly known as
reductionism. EPR correlations, however, clearly contradict the reductionist view of
science. This paradox and the plurality of concepts underlying the term molecular
structure is explained in terms of abstractions from EPR correlations. We break the
holistic symmetry of nature when we abstract deliberately from some EPR correlations.
Each abstraction creates its own reality. To describe an aspect of reality, we have to
ignore certain factors so that the remainder separates into distinct facts. Obviously, such
a description is true only within the adopted partition of the world.

In the context of molecular science, the various concepts of molecular structure
(e.g. classical valence bond representation, various chemical graph-theoretic repre-
sentations, ball and spoke model of a molecule, representation of the molecule by
minimum energy conformation, semisymbolic contour map of a molecule, or symbolic
representation of chemical species by Hamiltonian operators) are model objects [61]
derived through different abstractions of the same chemical reality or molecule [57,58].
In each instance, the equivalence class (concept or model of molecular structure) is
generated by selecting certain aspects while ignoring some unique properties of those
actual events. This explains the plurality of the concept of molecular structure and their
autonomous nature, the word autonomous being used in the sense that one concept is
not logically derived from the other [57].

3. Characterization of molecular structure

Any concept of molecular structure is a hypothetical sketch of the organization
of molecules. Such a model object is a general theory and remains empirically untest-
able. A model object has to be grafted onto a specific theory to generate a theoretical
model [61]. A theoretical model of an object can be empirically tested. For example,
when it was suggested by Sylvester [62] in 1878 that the structural formula of a
molecule is a special kind of graph, it was an innovative general theory without any
predictive potential. When the idea of combinatorics was applied on chemical graphs
(model objects), it could be predicted that “there should be exactly two isomers of
butane (C,H, )" because “there are exactly two tree graphs with four vertices” when one
considers only the nonhydrogen atoms present in C ,H,, [63]. This is a theoretical model
of limited predictive potential. Although it predicts the existence of chemical species,
given a set of molecules, e.g. isomers of hexane (CH, ). the model is incapable of
predicting any property. This is because of the fact that any empirical property P maps
a set of chemical structures into the set IR of real numbers and thereby orders the set
empirically. Therefore, to predict the property from structure, we need a nonempirical
(structural) ordering scheme which closely resembles the empirical ordering of
structures as determined by P [6,34]. This is a more specific theoretical model based on
the same model object (chemical graph) and can be accomplished by using specific
graph invariant(s) [2-9,10-23].
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The predictive potential of a theoretical model depends both on: (1) efficacy of
representation of the relevant aspects of reality by the model object, and (2) optimal
treatment of the model object by appropriate mathematical theories. Effective prediction
also depends on the quality of available data and the level of complexity (i.e. lack of
our understanding) of the property of interest. The more complex a property, the less
is the chance of optimal characterization of structural determinants (and prediction of
the property) by a particular theoretical model. This is the case with prediction of
carcinogenicity of chemicals, where experts recommend to supplement structural
criteria with various functional criteria (pharmacological/toxicological effects of
chemicals at different levels of biological organization) in order to attain an acceptable
level of prediction [48]. At this level of SAR (level I), the central question becomes:
Whether a particular activity is possible for a given chemical. No attempt is made to
predict the property quantitatively. At the next level of SAR (level II), predictions are
within an order of magnitude. Acute toxicity, e.g. LD, in rodents, LC, in fish, fall in
this category. The situation improves in level III SAR when we attempt to predict

Table 2
Different levels of SAR

Qualitative/ Central Extent of
Level  quantitative question accuracy Example
I Qualitative Is the activity None Carcinogenicity
possible? hydrolysis
I Qualitative Is a rough estimate Order of Chronic toxicity,
of the potency magnitude mutagenicity,
possible? bioconcentration factors
jiid Semiquantitative  Is an estimate of the  Factor of 2 Log P, toxicity of
activity possible? specific classes of
chemicals
Iv Quantitative What is the predicted  Within 20% of  Boiling point and
numerical value? measured data other chemical
properties

bioactivity of specific groups of chemicals with a well-defined mode of action, e.g.
narcotics, polar narcotics, uncouplers of oxidative phosphorylation, etc. At this stage,
our predictive capability comes within a factor of two. Finally, at the level IV SAR or
quantitative SAR (QSAR), we have less complex properties of molecules (e.g.
boiling point) which can be predicted from structure within 20% of the experimental
value [2,3,6,9,12,42,43,49,51,53,64—66]. Table 2 briefly summarizes various levels of
SAR - from purely qualitative to the quantitative.
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4.  Nonempirical approach to SAR

The ideal goal of SAR research is to predict behavior of chemical species from
a minimal set of input data. In principle, the set could consist of: (1) empirical properties
or parameters [41], (2) a combination of empirical and nonempirical parameters
[10,26,29,38], and (3) purely nonempirical parameters [1-8,11-25]. An alternative
classification was outlined in ref. [24]. However, two important considerations suggest
the use of as many nonempirical parameters as possible. Firstly, in drug design one can
easily envisage thousands of structures derivable from a particular pharmacological
"lead" and many of these might not even be synthesized at the time of evaluation of their
property [67]. Empirically-based SARs are not useful for predicting properties of such
chemicals. Secondly, from a more practical point of view, even simple properties such
as boiling point, melting point, or vapor pressure are not available for a very large
fraction of known chemicals [46]. Consequently, in recent years, nonempirical graph-
theoretic parameters have been used in SAR studies for predicting chemical behavior
[1-9,11-25]. These are graph invariants [68], usually a single number or a vector,
which can be used to characterize and order molecules, and predict properties. It
is evident from published literature that SAR models work well for reasonably
homogeneous sets of chemicals. This reflects the age-old wisdom of biomedicinal
chemistry: similar structures usually have similar properties. In the case of bioactive
molecules, structures recognized by a particular enzyme or receptor are usually
reasonably similar, and may be looked upon as derived from a "core structure”
(pharmacophore or toxophore). No such structural homogeneity is evident in non-
specific (narcotic) interaction [69]. Good prediction of bioactivity of a diverse group of
narcotic chemicals can be achieved either through classification of the original set into
chemically (based on some arbitrary concept of structural similarity) or biochemically
(on the basis of some well-defined biochemical mechanism of action, e.g. narcosis,
polar narcosis, etc.) homogeneous subsets or by accounting for structural heterogeneity
in terms of multiple physicochemical factors, e.g. molecular size, dipolarity, hydrogen
bonding, etc. [70]. For a set of molecules with limited structural diversity, presence or
absence of certain functional group(s) or selected substructure(s) may act as classifiers.
However, this method fails for a very diverse group of chemicals. At the topological
level, when paths of length two (P,) and paths of length three (P,) are taken as
coordinates of chemical structure on a coordinate grid, useful ordering of isomers can
be achieved [71].

In an earlier paper, we found that lipophilicity (log P), octanol-water) of a large
(n = 382) and structurally diverse group of chemicals could be predicted reasonably well
with a combination of molecular connectivity indices, molecular complexity indices,
and a hydrogen bonding parameter HB, [6]. This result is in line with the notion that
hydrophobicity of a chemical is primarily determined by its size, polarity, and hydrogen
bonding properties [41]. The HB, parameter is algorithmically defined and can be
calculated for all molecular structures [72,73]. Since it has been found that SAR models
work more efficiently for homogeneous groups of molecules as opposed to diverse data
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sets, it was of interest to see whether a combination of connectivity and complexity
indices can provide a viable model for the prediction of log P of solutes without strong
hydrogen bonding ability. Therefore, in this paper we attempted to predict log P for a
subset (n = 139) of nonhydrogen bonding (HB, = 0) chemicals derived from the original
diverse set (n = 382) of molecules analyzed in our previous study [6].

5.  Theoretical foundation, definition, and computation of parameters

In this paper, we have used three types of parameters: (a) molecular connectivity
indices, (b) molecular complexity indices, and (c) hydrogen bonding parameter HB,.
A graph G is defined as an ordered pair consisting of two sets V and R,

G =[V.R],

where V is a finite nonempty set and R is a binary relation defined on V. The elements
of V are called vertices and the elements of R, sometimes symbolized by E(G) or E, are
called edges. Such an abstract graph may be visualized by representing elements of V
as points and by connecting a pair x = (v,, v,) of elements of V with a line if and only
if (v,, v, ) € R. Two vertices of G are called adjacent if they are connected by a line. A
walk of the form Vg X, U} X, - .., U, joins vertices vy and v, in G. The length of a walk
is the number of occumances of lines init. A walk is closed if U, = U,. A path is an open
walk in which all vertices are distinct. A graph G is connected if every pair of its vertices
is connected by a path. A graph G is a multigraph if it contains more than one edge
between at least one pair of adjacent vertices, otherwise G is a linear graph. The
distance d(v,, v) between vertices v. and v, in G is the length of any shortest path
connecting v, and v. The degree 5‘ of the vertex v, in G is equal to the number
of lines incident with v,. The radius p of a graph is gwen by p=minmax_ _,d(u, v).
Foravertex ve 'V, the first-order neighborhood T''(v) is a subset of V such that I''(v)

= {u € V|d(u, v) = 1}. The first-order closed neighborhood N'(v) is a subest of V such
that N'(v) = (v) L T(v) = T(v) U T''(v), where (v) is the one-point set consisting of
v only and may be looked upon as I"%(v). If p is the radius of a graph G, we can construct
T(v) and N'(v), i =1,2,..., p, for each vertex v in G. Detailed definitions of terms
used in this paper may be found in books by Harary [68] and Trinajsti¢ [74].

A graph G = [V, E] becomes a model object in chemistry when elements of V
represent a prescribed set of atoms in a molecule and the edge set E depicts the bonding
relationship among them. Any pair of atoms in a molecule is involved in a binary
relation: either the pair is bonded or not bonded. This pattern of connectedness of atoms
in a molecule is adequately represented by graphs. Figure 1 gives the chemical structure,
hydrogen-suppressed multigraph (G,) and simple hydrogen-suppressed linear graph
(G,) of acetamide. While in G, all hydrogen atoms present in the molecule are ignored,
G, does not take care of atom types or bond multiplicity. Molecular graphs like G, and
G, are of little use in comparing chemical structures and predicting their properties
unless they lead to a more precise mathematical description or a theoretical model [61].
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Fig. 1. Stnictural formula, hydrogen-suppressed
multigraph and simple linear graph of acetamide.

In the realm of chemical graph theory, this has been accomplished by defining specific
graph invariants [4,12,16,22,28,35,36,63,74]. A graph invariant may be a polynomial,
a vector (sequence), or a single number. The Wiener index [75], connectivity
indices [4,12], and molecular complexity indices [22,74] are examples of numerical
graph invariants. From the simple linear graphs of a molecule, the zero-order connec-
tivity index %y is calculated as:

O =287 )

Randi¢'s connectivity index 'y is calculated as [4]:

'r= T @& 3)
all edges
A generalized connectivity index "x considering paths of the type v, v, ..., v, of
length h is defined as [12]:
1= X (%o di...8) ' 4)
all paths

Cluster, path—cluster, and cycle types of connectivity indices are calculated by the
method of Kier and Hall [76].

Simple connectivity indices are computed from the linear graph model of a
molecule, where the weight of a vertex v, in G is equal to its degree 6. or the topological
valency of the ith atom. This picture over-simplifies the chemical reality of a molecule,
neglecting features such as bond angle, bond length, chirality, nature of individual
atoms, etc. Improvements over simple linear graph models of molecules have been done
by representing molecules using weighted graphs [12,35,76—78]. Valence connectivity
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indices result from one such weighting scheme, where the degree 6. of the vertex v, in
the weighted graph is given by [12]:

=(Z;-h)/(Z-Z;-1), (3)

where Z is the atomic number of the ith atom, Z‘. is the number of valence electrons, and
h, is the number of hydrogen atoms attached to the ith atom. Valence connectivity
indices are calculated by substituting 6‘." for 5. in the above relevant equations for
calculation of simple connectivity indices.

Molecular complexity indices constitute another way of deriving numerical
descriptors from molecular graphs [9,11,16,22,77,79-82]. The science of information
theory has grown mainly out of the pioneering studies of Shannon [83], Wiener [84],
Ashby [85], and Kolmogorov [86]. There is more than one version of information
theory [81]. In Shannon's [83] statistical information theory, information is measured as
reduced uncertainty of the system. In the algorithmic theory of Kolmogorov [86], the
quantity of information is defined as the minimal length of a program which allows a
one-to-one transformation of an object (set) into another. In applying information-
theoretic formalism on chemical graphs, one looks upon the information content (or
complexity) of a graph as a measure of its degree of variety or heterogeneity, as
suggested by Ashby [85]. An appropriate set A of n elements is derived from a
molecular graph G depending on certain preselected criteria. On the basis of an equi-
valence relation defined on A, the set A is partitioned into equivalence classes A, of order
n(i=12...,h Z n, = n). A probability scheme is then assigned to the set of
equivalence classes

(Al,Az A,,)
Pi:P2 seers Pa ’
where p.= n,/n, n, and n being the cardinalities of A, and A, respectively. The mean

information content (or complexity) of an element A is defined by Shannon's [83]
relation:

IC = —Zp,- logzp; . (6)

The logarithm is taken at base 2 for measuring the information content in bits. The total
complexity of the set A is then n times IC.

It is to be noted that the complexity of a real object or a model object is not
uniquely defined. While there could be more than one way of defining a model object
[57,61] corresponding to the same piece of reality, complexity of the same model object
may vary depending on the nature of the equivalence relation. In science, we deal with
equivalence classes of events generated by grouping actual events and ignoring, at the
same time, some unique properties of those events [57]. For example, when A represents
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the vertex set of a chemical graph G, two methods of partitioning have been widely
used: (a) chromatic-number coloring of G, where two vertices of the same color are
considered equivalent, and (b) determination of the transitive sets or orbits of the
automorphism group of G, whereafter vertices are considered equivalent if they belong
to the same orbit [87—90]. Excellent reviews are available on measures of complexity
and computation of complexity parameters [22,81,87].

Rashevsky [91] symbolized molecules by simple linear graphs and calculated
molecular complexity. In this approach, two vertices 4 and v of a graph G are said to
be topologically equivalent if and only if for each neighboring vertex u, (i=1,2,...,4)
of the vertex u there is a distinct neighboring vertex v, of the same degree for the vertex
v. Subsequently, various authors have computed complexity of molecules where linear
graphs [11,80,87-90] or multigraphs [82] with indistinguishable vertices were used to
symbolize the chemical species. On the other hand, to account for the unique nature of
atoms and their bonding pattern in a molecule, Sarkar et al. [93], Roy et al. [94], Basak
et al. [28,79], Ray et al. [77] calculated complexity of graphs on the basis of equivalence
relations where both the nature of the atom (vertex) and the number and chemical nature
of bonded neighbors of all atoms are taken into account. This was accomplished by
defining open spheres for all vertices of the molecular graph [95]. If r is any nonnegative
real number and v is a vertex of the graph G, then the open r-sphere S(v, r) is defined
as the subset V(G) consisting of all vertices v, such that d(v, v,) <r. Obviously, S(v, 0)
=@, 8w, r)=vfor0<r<1,and S, r)-—(v)uI“(v) N‘(u) for 0 < r < 2. One
can construct open r-spheres of each vertex of G for all integral values of r,0 < r < p.
For a particular value of , the collection of all such open spheres S(v, r), where U runs
over the entire vertex set V, forms a neighborhood system of the vertices of G. A
suitably defined equivalence relation can then partition V into disjoint subsets based on
the equivalence of nature, connectedness, and bonding pattern of neighbors up to rth-
order neighborhoods [94]. It is noteworthy that this approach incorporates the effects of
distant neighbors (i.e. neighbors of immediately bonded neighbors) on an atom or a
reaction center. After partitioning of the vertices for a particular order (r) of neighbor-
hood, IC is calculated by eq. (6). Subsequently, Basak, Roy and Ghosh [79] defined
another mformanon—theoreue measure, structural information content (SIC ), which is
calculated as:

SIC = IC /log,n, Q)

where IC is calculated by eq. (6) and n is the total number of vertices of the graph. It
is noted that SIC is related to Brillouin's [96] measure of redundancy of a system.
Another mformanommeoreuc invariant, complementary information content (CIC),
was defined as [28]:

CIC =log,n - IC. &)



§.C. Basak et al., Optimal characterization of structure 195

The Wiener index W [75], and the information-theoretic indices I and v are
calculated from the distance matrix of chemical graphs [81]. The set of topological
indices used in this paper are shown in table 3. Topological parameters were calculated

Table 3
Definition and symbols for topological indices

w Half-sum of the off-diagonal elements of the distance matrix of a graph.

I ;)" Information index for the magnitudes of the distances between all possible pairs
of vertices of a graph.

y Mean information index for the magnitude of the distance.

IC, Mean information content or complexity of a graph based on the rth
(r=0,1,...,6) order neighborhood of vertices in a graph.

SIC, Structural information content of a graph based on rth (r = 0, 1, ..., 6) order
neighborhood of vertices. ’

CIC, Complementary information content of a graph G calculated from the rth
(r=0,1,...,6) neighborhood of vertices.

hy Path terms of hth order (1 =0, 1, ..., 6).

klc Cluster terms of hth order (h=3,...,6).

thc Path—cluster terms of hth order (h =4, ..., 6).

kaH Chain or cycle terms of different orders (h=3,...,6).

ky Valence connectivity type path terms of Ath order (h=0,1,...,6).

"x"c Valence connectivity type cluster terms of Ath order(h=3,...,6).

"x‘l’,c Valence cornectivity type path—cluster terms of hth order (h =4, ..., 6).

";("CH Valence connectivity type chain or cycle terms of hth order (h=3,...,6).

B, Number of paths of length &4 (k= 0, 1, ..., 10) in the hydrogen deleted graph.

by the computer program POLLY [97], where SMILES line notation [98] is the input.
Log P values of the 139 chemicals analyzed in this paper were calculated by CLOGP3
(version 3.53) of MedChem software [99] at the U.S. EPA’s Environmental Research
Laboratory in Duluth. The hydrogen bonding parameter HB, was calculated by using
a computer program developed by Basak [72], based on the ideas of Lien and co-
workers [73]. HB, includes both hydrogen bond donor and hydrogen bond acceptor
properties.

6. Statistical analyses

The present study is the continuation of our ongoing QSAR research to develop
models for the prediction of properties of molecules using parameters which can be
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calculated directly from structure. In a recent study, using a set of 70 topological
parameters and HB, as independent variables, we found that a combination of molecular
connectivity indices, molecular complexity indices, and the hydrogen bonding para-
meter HB, could predict (R? = 0.91) reasonably well the octanol—water partition
coefficient (log P) of a diverse group of 382 chemicals [6]. The following parameters
appeared in linear regression equations containing up to ten independent variables:

O.v 3, 4.V 4.V

Fo 1Cy CIC, “% Yoo "Moo Xew X X' X' e
We used the maximum R? method to identify the prediction model for log P [100].
This method finds the "best" one-variable model, the "best" two-variable model, and so
forth, for the prediction of the dependent variable. Of the independent variables, HB,
quantitates the hydrogen bonding ability of a molecule approximately and has integral
values [73]. Therefore, we decided to use HB, to classify a diverse set into more
homogeneous subsets instead of using HB, as an independent variable. As a first
exploratory analysis, we decided to take those molecules (n = 139) of the set of 382
which lack any hydrogen-bonding potential with respect to the scale of Ou et al. [73],
and investigated to what extent topological indices could predict log P values for the
homogeneous non-hydrogen bonding group.

Multiple regression analysis showed that there was an improvement in the
prediction of log P up to step 6 (table 4). In the six-variable model, there was a

significant regression of log P with %", *x", “¥}.c» Xy *% and IC, parameters. This

Table 4

Summary of multiple regression analysis for prediction of log P from topological indices

Standard error
Step Variables F R? of estimate
1 O 1180 0.90 0.46
2 CIC,, %" 928 0.93 0.37
3 CIC,, *xew °2 677 0.94 0.36
4 IC, “2ewr ' 2 593 0.95 033
5 IC, *z Sxep 2 2 507 095 032
6 IC, *%er ey °2+ X X 446 0.95 031

model was developed using the set of 139 compounds. However, the model had two
influential outliers (compounds 14 and 101 in table 5) as determined by Cook's D
statistic [101]. Deletion of these two compounds resulted in the following highly
significant 6-variable model:
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Table §

Log P, estimated log P, and six topological indices for 139 compounds

197

Predicted
Sequence log P
number  Chemical name LogP (eq.(9)) IC, SXC 6;{CH % Zre
1 1,1,1-trichloroethane 2481 2797 0940 0.000 0.000 1.775 0.000 0.000
2 1,1,2,2-tetrachloroethane 2.644 2.872 0916 0.287 0.000 1.901 0.000 1.080
3 1,2,3 4-tetrachlorobenzene 4.994 4875 0900 0324 0.054 2.162 0.808 0.983
4 1,23 4-tetramethylbenzene  4.738 4707 0.869 0324 0.054 2.099 0.738 0.862
5  1,2,3,5-tetracholorobenzene  4.994 4912 0900 0.241 0.054 2.162 0.896 0.864
6  1,2,3,5-tetramethylbenzene  4.738 4712 0.869 0241 0.054 2.099 0.812 0.760
7 1,23-trichlorobenzene 4281 4165 0916 0241 0.066 2.033 0.694 0.793
8 1,2,3-trimethylbenzene 4.089 4067 0.867 0241 0.066 1979 0.641 0.690
9  1,2,4,5-terachlorobenzene 4994 4896 0900 0.287 0.054 2.162 0.818 0.895
10 1,2.4,5-tetramethylbenzene  4.738 4711 0.869 0.287 0.054 2.099 0.744 0.788
11 1,2,4-trichlorobenzene 4281 4113 0916 0.154 0.066 2.033 0.692 0.663
12 1,2.4-uimethylbenzene 4,089 3991 0.867 0.154 0.066 1.979 0.637 0.582
13 1,2-dibromobenzene 3.588 4,063 0900 0.154 0.080 2.109 0.698 1.018
14  1,2-dibromoethane 1.738 0916 0.000 0.000 1.847 0.000 0.000
15  1,2-dichlorobenzene 3.568 3414 0900 0.154 0.080 1.884 0.537 0.559
16 1,2-dicholoroethane 1.458 1.862 0916 0.000 0.000 1.544 0.000 0.000
17 1,2-diphenylethane 4.888 4931 0.831 0.000 0.186 2.218 0.947 0.364
18  1,3,5-tricholorobenzene 4281 4195 0916 0.000 0.066 2.033 0.873 0.449
19 1,3,5-trimethylbenzene 4.089 4.005 0.867 0.000 0.066 1979 0.789 0405
20  1,3-dicholorobenzene 3.568 3417 0900 0.000 0.080 1.884 0.640 0.341
21 1,3-dimethylnaphthalene 4614 4.657 0965 0.152 0.130 2.136 0.989 0.595
22 14.,5-rimethylnaphthalene 5.263 5259 0972 0.262 0.117 2239 1.079 0.782
23  1,4-dibromobenzene 3.868 4,172 0900 0.000 0.080 2.109 0.672 0.563
24 1.4-dicholorobenzene 3.568 3269 0900 0.000 0.080 1.884 0.520 0.362
25 1,4-dimethylnaphthalene 4614 4698 0965 0222 0.130 2.136 0956 0.665
26 1,5-dimethylnaphthalene 4614 4716 0965 0222 0.128 2.136 0.965 0.665
27  1-butene 2.266 1.627 0.651 0.000 0.000 1.384 0.000 0.000
28 1-chlorobutane 2.523 2917 0.788 0.000 0.000 1.659 0.337 0.000
29  l-chloroheptane 4.110 4719  0.752 0.000 0.000 1.998 0.635 0.000
30  1-chlorohexane 3.581 4,175 0.761 0.000 0.000 1.897 0.536 0.000
31 1-chloronaphthalene 4.029 4.166 0969 0.152 0.141 2.038 0.888 0.534
32 1l-chloropentane 3.052 3.568 0.773 0.000 0.000 1.785 0.427 0.000
33 l-chloropropane 1.994 1.920  0.807 0.000 0.000 1.515 0.000 0.000
34  1l-ethylnaphthalene 4.494 4513 0965 0.128 0.141 2.110 0956 0516
35  1-hexene 3324 3220 0.651 0.000 0.000 1.688 0.299 0.000
36  1l-isopropyl4-methylbenzene 4.368 4323 0.869 0.154 0.080 2.065 0.668 0.604
37  1-methylbenz(a)anthracene  6.313 6.178 0977 0286 0.233 2472 1.384 0.870
38  1-methylfluorene 4874 4946 0.839 0.243 0310 2.225 1.199 0.777
39  1-methylnaphthalene 3.965 4,136 0945 0.152 0.141 2.020 0.870 0.509
40  1-pentene 2.795 2.510  0.651 0.000 0.000 1.547 0.186 0.000
41 12-methylbenz(a)anthracene 6313 6237 0977 0322 0237 2472 1410 0901
42 2,2'4,5-tetrachlorobiphenyl  6.882 6462 0.890 0347 0.130 2485 1.192 1.005
43 2,2'4-trichlorobiphenyl 6.169 5964 0.873 0222 0.141 2393 1.143 0.797
44 2,2 Aarimethylpentane 4.536 4701 0.637 0.000 0.000 2.052 0.800 0.597
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Table 5 (continued)

Predicted
Sequence log P
number  Chemical name LogP (q.9) IC, ‘x. ®xey %' U “Zic
45  2,3,45-tetrachlorobiphenyl  6.882 6451 0.890 0409 0.137 2485 1.198 1.129
46  2,3-dimethylnaphthalene 4614 4632 0965 0223 0.130 2.136 0.903 0.679
47  24'-dichlorobiphenyl 5.456 5385 0.842 0.152 0.154 2.291 0.992 0.654
48  2,4,5-richlorobiphenyl 6.169 5957 0873 0.286 0.147 2393 1.104 0.880
49 2,4 .6-trichlorobiphenyl 6.169 6.024 0.873 0.193 0.147 2393 1.241 0.764
50  2,5-dichlorobiphenyl 5.456 5404 0842 0.152 0.157 2291 1.006 0.643
51  2,6-dichlorobiphenyl 5.456 5546 0.842 0.193 0.157 2.291 1.097 0.684
52 2,6-dimethylnaphthalene 4614 4476 0965 0.080 0.128 2.136 0910 0.549
53 2-chlorobiphenyl 4.743 5016 0792 0.152 0.170 2.178 0.939 0534
54  2-chloronaphthalene 4.029 4.049 0969 0.080 0.141 2.038 0.851 0459
55  2-chlorophenanthrene 5.203 5221 0985 0.176 0.188 2.285 1.152 0.681
56  2-chlorotoluene 3.504 3283 0941 0.154 0.080 1.863 0.523 0.521
57  2-methylanthracene 5.139 5.140 0969 0.154 0.188 2.272 1.118 0.651
58  2-methylbutane 3.209 2496 0.628 0.000 0.000 1.665 0.000 0.342
59  2-methylhexane 4267 4080 0635 0.000 0.000 1.902 0477 0.254
60  2-methylnaphthalene 3.965 4015 0945 0.080 0.141 2.020 0.837 0443
61  2-methylpentane 3.738 3592 0.632 0.000 0.000 1.790 0.456 0.254
62  2-methylphenanthrene 5.139 5192 0969 0.176 0.188 2.272 1.142 0.668
63  3-chlorotoluene 3.504 3254 0941 0.000 0.080 1.863 0.615 0324
64  4-chlorotoluene 3.504 3.118 08541 0.000 0.080 1.863 0.506 0.344
65  5,6-dimethylchrysene 6.962 6.657 0997 0421 0.230 2.547 1466 1.052
66  S5-methylchrysene 6313 6231 0977 0308 0.237 2472 1410 0.878
67  6-methylbenzo(e)pyrene 6.773 6.687 0.990 0400 0.264 2.553 1575 1.031
68  6-methylchrysene 6.313 6.244 0977 0326 0.237 2472 1397 0.890
69  7-ethylbenz(a)anthracene 6.842 6466 0997 0306 0.237 2.530 1.457 0.899
70 7-methylbenz(a)anthracene  6.313 6.249 0977 0339 0237 2472 1397 0912
71  9,10-dimethylanthracene 5.788 5832 0989 0354 0.186 2363 1.271 0.896
72 9-methylanthracene 5.139 5316 0969 0257 0.192 2272 1.176 0.740
73  acenapthene 4.070 4026 0985 0.154 0.284 2.064 1.159 0.631
74  adamantane 3982 4376 0.673 0.000 0241 2022 1.606 0.881
75  anthracene 4.490 4815 0909 0.154 0200 2.172 1.059 0.556
76  benz(a)anthracene 5.664 5826 0925 0243 0.245 2391 1.307 0.759
77  benz(b)anthracene 5.664 5783 0925 0223 0.245 2391 1.290 0.743
78  benzene 2.142 2031 0.693 0.000 0.118 1496 0326 0.000
79  benzo(a)fluorene 5.399 5298 0961 0.265 0360 2350 1.363 0.820
80  benzo(a)pyrene 6.124 6.299 0940 0317 0268 2479 1502 0922
81  benzo(b)fluoranthene 6.124 5984 0940 0355 0405 2479 1516 0935
82  benzo(b)fluorene 5399 5232 0961 0.243 0367 2350 1.342 0.799
83  benzo(e)pyrene 6.124 6346 0940 0341 0.272 2479 1.517 0.933
84  benzo(ghi)perylene 6.584 6.732 0948 0392 0293 2559 1.656 1.065
85  benzo(j)fluoranthene 6.124 5986 0940 0341 0.395 2479 1.517 0.933
86  benzo(k)fluoranthene 6.124 5942 0940 0334 0401 2479 1499 0926
87  biphenyl 4030 4529 0.690 0.080 0.186 2.051 0.816 0.326
88  bromobenze 3.005 3230 0844 0.000 0.097 1.849 0.542 0.321
89  carbon tetrachloride 2.875 3544 0543 0.000 0.000 1.798 0.000 0.000
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Table 5 (continued)
Predicted

Sequence log P
number  Chemical name LogP (eq.- O IC, *x. Sty X' X X
90  chloanthrene 6418 6.065 1.008 0.330 0358 2.500 1.577 0.981
91  chlorobenzene 2.855 2.663 0.844 0.000 0.097 1.709 0.445 0.197
92  chrysene 5664 5877 0925 0.265 0245 2391 1327 0.776
93 cycloheptane 3913  4.160 0.651 0.000 0.000 1.783 0.805 0.000
94  cyclohexane 3354  3.198 0.651 0.000 0.118 1.657 0.723 0.000
95  cyclohexene 2810 2786 0.670 0.000 0.118 1.606 0.565 0.000
96  cyclooctane 4472 4713 0.651 0.000 0.000 1.896 0.881 0.000
97  cyclopentane 2.795 2.836 0.651 0.000 0.000 1.512 0.633 0.000
98  cyclopentene 2.251 2371 0.673 0.000 0.000 1453 0.463 0.000
99  dibenz(ah)anthracene 6.838 6.659 0933 0324 0287 2.571 1.506 0.929
100  dibenz(aj)anthracene 6.838 6.659 0933 0324 0287 2571 1.507 0.929
101  diethyl sulfide 1.900 0.770 0.000 0.000 1.730 0.477 0.000
102 dimethyl sulfide 0.842 1.622  0.799 0.000 0.000 1.441 0.000 0.000
103 ethyl chloride 1.465 1.167 0.832 0.000 0.000 1346 0.000 0.000
104  ethylbenzene 3320 3.129 0.855 0.000 0.097 1.807 0.539 0.226
- 105  fluoranthene 4950 5058 0936 0272 0363 2.280 1.320 0.772
106  fluorene 4225 4461 0.793 0.176 0329 2.119 1.125 0.623
107  fluorobenzene 2.285 2069 0844 0.000 0.097 1.561 0347 0.070
108  fluorotrichloromethane 2.435 2455 0.863 0.000 0.000 1.664 0.000 0.000
109  hexachlorobenzene 6.420 6.534 0.693 0511 0.036 2380 1.099 1.329
110 hexamethylbenzene 6.036 5966 0.863 0511 0.036 2303 0.989 1.179
111 iodobenzene 3.265 3579 0.844 0.000 0.097 1.935 0.604 0.397
112 isopropylbenzene 3.719 3.802 0867 0.154 0.097 1941 0.609 0493
113 naphthalene 3316 3582 0.872 0080 0.154 1.890 0.758 0326
114 pentachlorobenzene 5.707 5667 0.844 0401 0.044 2.277 0976 1.135
115  pentachloroethane 3.627 3.844 0.832 0.624 0.000 2.047 0.000 1.566
116  pentamethylbenzene 5.387 5365 0.867 0401 0.044 2206 0.881 1.001
117 perylene 6.124 6458 0.878 0339 0269 2479 1522 0.932
118  phenanthrene 4490 4866 0.909 0.176 0.200 2.172 1.083 0.575
119  pyrene 4950 5379 0936 0.230 0221 2.280 1300 0.757
120 tetrachloroethylene 3.020 3394 0.651 0.287 0.000 1.877 0.000 0.899
121 toluene 2.791 2.601 0.821 0.000 0.097 1.684 0.428 0.176
122 tricholoethylene 2.267 2.193 0900 0.000 0.000 1.701 0.000 0351
123 triphenylene 5664 5924 0925 0287 0.252 2391 1.350 0.781
124  m-xylene 3440 3300 0.855 0.000 0.080 1.842 0.592 0.307
125  n-decane 5984 5743 0.640 0.000 0.000 2.158 0.792 0.000
126  n-nonane 5455 5297 0.639 0.000 0.000 2.073 0.708 0.000
127  n-octane 4926 4813 0.637 0.000 0.000 1.980 0.617 0.000
128  n-undecane 6.513 6.153 0.641 0.000 0.000 2.237 0.869 0.000
129  n-heptane 4397 4277 0.635 0000 0.000 1.877 0517 0.000
130 n-butane 2.810  2.098 0.622 0.000 0.000 1.485 0.000 0.000
131  n-butylbenzene 4378 4191 0869 0.000 0.097 2.016 0.706 0.198
132 n-hexane 3868  3.681 0.632 0.000 0.000 1.763 0405 0.000
133 n-pentane 3339 3.035 0.628 0.000 0.000 1.633 0.303 0.000
134  n-propylbenzene 3.849 3729 0.867 0.000 0.097 1917 0.659 0.198
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Table 5 (continued)

Predicted
Sequence log P
number  Chemical name LogP (eq.9) IC, 2 *xew %2 2 *Xic
135  o-xylene 3440 3359 0.855 0.154 0.080 1.842 0.509 0.484
136  p-xylene 3440  3.176  0.855 0.000 0.080 1.842 0.493 0326
137  tert-amylbenzene 4647 4609 0867 0299 0.097 2.151 0.739 1.003
138 tert-butylbenzene 4.118 4506 0.869 0360 0.097 2.065 0.662 0.794

139 trans-1,2-dichloroethylene 1.514 1567 0.950 0.000 0.000 1.487 0.000 0.000
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Fig. 2. The plot of predicted log P (using the six-parameter
model of eq. (9)) versus log P for 137 compounds (table 5).

log P = -3.127 - 1.644(IC)) + 2.120C°x,) ~ 2.914(%,

o) + 4.208(°%

+1.060(*%") - 1.020(*%%o).  (n =137, R* =097, se=026). (9

The distribution of residuals based on eq. (9) was normal (Wilks—Shapiro, p = 0.082)
and no outliers were determined through Cook's D statistic [102,101]. For the group of
139 compounds, the values of the six algorithmically defined predictors which appeared
in eq. (9) are given in table 5. A plot of predicted log P (using eq. (9)) versus log P
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is shown in fig. 2. Results show that there is an improvement of the predictability of
log P (R? = 0.97) for the set of 137 chemicals as compared to the total set of 382
compounds (R? = 0.91) reported earlier [6].

7. Discussion

The primary purpose of this paper was to develop a scheme for classification of
diverse sets of molecules and the prediction of their properties using algorithmically
defined structural variables. The success of the approach is evident from results
presented by eq. (9), which shows that a combination of molecular connectivity indices
and molecular complexity indices can efficiently predict (R? = 0.965) log P values of
a relatively homogeneous group of weakly hydrogen-bonding (HB, = 0) chemicals. In
an earlier study [6], we reported that log P (octanol-water) of a large and diverse set
of 382 chemicals could be predicted reasonably well (R% = 0.91) with a combination of
molecular connectivity indices, molecular complexity indices, and the hydrogen bond-
ing parameter HB,. This is in agreement with the finding that lipophilicity of a molecule
is related to its size, polarizability, and ability to form hydrogen bonds [41]. It is known
that many of the connectivity indices, the Wiener index W, Igv and TDW are highly
correlated with molecular size {6,18,35,40,46,103]. Although each of these indices may
quantitate different proportions of bulk and shape factors, size seems to be the principal
molecular factor encoded by these indices [6,35,46,103). Many of these invariants are
based on simple linear graph models of molecules. A linear graph grossly oversimplifies
the complex reality of a molecule by depicting only its primary structure (i.e. connec-
tivity of atoms) and neglecting other structural features, e.g. bond length, bond angle,
stereochemistry, chirality, etc. [74]. Yet, the success of graph-theoretic invariants deri-
ved from linear graphs in predicting physicochemical/biological properties of congeners
is well known [1-14,74,75]. This indicates that for reasonably homogeneous groups of
structures or for molecules with a specific biochemical mode of action, a property is
primarily governed by the pattern of connectedness of atoms as opposed to specific
properties of certain atoms, functional groups or substructures. On the other hand,
molecular complexity indices are defined on weighted multigraphs which account for
the heterogeneity of atomic envimoment in the molecule [16,22,27,28,77,79,93]. Our
earlier study on a set of 3692 structurally diverse chemicals showed that complexity
indices contain information not encoded by simple connectivity, valence connectivity,
W, Ig" and ]“gv parameters [35,46].

Although molecular size and heterogeneity are accounted for, in terms of connec-
tivity and complexity parameters, respectively, they are not able to predict log P very
efficiently [6]. This is because these parameters are incapable of quantifying hydrogen
bonding, a proximity effect of substituents. A substituent may modify properties of the
parent structure (or reaction center) through a variety of interactions: (1) proximity
effect, e.g. hydrogen bonding, neighboring group involvement, steric retardation or
acceleration, (2) resonance effects via delocalization, (3) direct electrostatic inter-
actions arising from substituent poles or dipoles, and (4) indirect actions by means of
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polar effects (104]. The prediction of lipophilicity of molecules should be done using
parameters which optimally characterize major determinants of that property, viz.,
molecular size, polarity and hydrogen bonding. For the set of 382 chemicals, this could
be achieved at an acceptable level (R? = 0.91) through a combination of molecular
connectivity indices, molecular complexity indices, and HB| [6].

The quantitation of hydrogen bonding ability of a molecule is a complicated
process. Different empirical and theoretical methods have been used to quantitate
hydrogen bonding capacity of molecules [43,73,104-107]. HB, is a convenient
quantifier of hydrogen bonding and can be calculated directly from structure. Also, it
is an approximate parameter and has integral values.

In our earlier studies, we used HB as an independent variable [6]. An altemnative
use of HB, could be in the classification of diverse sets of molecules into relatively
homogeneous subsets based on the degree of hydrogen bonding. The simplest classifi-
cation could partition a set of chemicals into strongly hydrogen bonding (HB, 2 1) and
weakly hydrogen bonding (HB, = 0). Of the 382 chemicals analyzed in our previous
study, 139 have HB, = 0. Results of regression analysis (eq. (9)) show that a preselected
set of graph-theoretic invariants can effectively predict (R? = 0.97) log P values of the
more homogeneous set of weakly hydrogen bonding chemicals (fig. 2). The parameters
used for this study are a subset of 70 graph invariants (table 3) which appeared in linear
regression models of log P containing up to 10 independent variables for the entire set
of 382 chemicals [6].

In this paper, we have used graph invariants defined on linear graphs and
multigraphs. While the list of descriptors chosen for this study is not exhaustive, the set
of indices used in this paper appear to optimally characterize aspects of molecular
structure pertinent to the prediction of log P (octanol-water). Further studies with other
properties are needed to evaluate the utility of this approach in the characterization of
molecular structure and the prediction of properties.
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